

14ELN15/25

First/Second Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Basic Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each module.

Module - 1

- a. Explain the operation of a full wave rectifier using centre tap transformer with the help of a circuit diagram and relevant waveforms. Show that its maximum efficiency is 81.2%.
 - (10 Marks) b. Draw the common emitter circuit of a transistor and sketch the input and output characteristics. Explain the different regions of operation by indicating them on the characteristic curve. (07 Marks)
 - c. Calculate I_C , I_E and β in a common emitter transistor circuit that has $\alpha = 0.98$ and $I_{\rm B}=100\,\mu A\;.$ (03 Marks)
- With appropriate circuit diagram, explain the DC load line analysis of a semiconductor (05 Marks)
 - b. Explain the working of a negative clamper circuit. (05 Marks)
 - c. A transformer with 10: 1 turns ratio is connected to a halfwave rectifier with supply voltage of 220sin 210t. If load and forward resistances are 500 Ω and 10 Ω respectively, calculate the average output voltage, dc output power, ac input power, rectification efficiency and peak inverse voltage. (05 Marks)
 - With neat circuit diagrams, explain zener voltage regulator with load and no load. (05 Marks)

- a. In a voltage divider bias circuit, $V_{CC}=24V$, $R_1=180$ K Ω , $R_2=56$ K Ω , $R_E=4.7$ K Ω and $R_C = 8.2 \text{ K}\Omega$. Calculate the approximate levels of I_C , V_E , and V_{CE} . (05 Marks)
 - b. Explain how an opamp can be used as a, (i) Voltage follower, Integrator (iii) Differentiator and (iv) Summing amplifier. (10 Marks)
 - Design an inverting and non inverting operational amplifier to have a gain of 15. (05 Marks)
- a. What is an operational amplifier? List the ideal characteristics of an opamp. (06 Marks)
 - b. The base bias circuit has $R_B = 470 \text{ K}\Omega$, $R_C = 2.2 \text{ K}\Omega$, $V_{CC} = 18 \text{ V and if the transistor has}$ β = 100. Determine I_B, I_C and V_{CE}. (06 Marks)
 - c. Design an adder circuit using an opamp to obtain an output voltage of, $V_0 = -[2V_1 + 3V_2 + 5V_3]$

(05 Marks)

d. Explain slew rate and CMRR of an opamp.

(03 Marks)

Module - 3

- Realize a two input exclusive NOR gate using only NAND gates, indicating the output at each of the gate.
 - b. Realize a Full adder using two half adders and an OR gate. Write the truth table and expressions for sum and carry outputs. (08 Marks)
 - State and prove DeMorgan's theorem.

(04 Marks)

Simplify the Boolean expression, $\overline{xy} + xyz + x(y + xy)$.

(04 Marks)

14ELM15/25

	(_	
6	a.	Subtract (1111.101) ₂ from (1001.101) ₂ using 1's and 2's complement method. (94 Marks)
	b.	Convert (i) (2AD.E3) ₁₆ to its octal and decimal equivalents.
		(ii) (1456.72) ₈ to its decimal and Hexadecimal equivalents. (04 Marks)
	c.	Explain the 'OR' and 'AND' operation using diodes. (06 Marks)
	d.	Simplify and realize the expression using Basic gates.
		$Y = \overline{AB} + \overline{AC} + \overline{ABC} + (\overline{AB+C}) $ (06 Marks)
		Module – 4
7	a.	What is a flip flop? With the help of a logic diagram and truth table, explain the working of
		a clocked SR flip flop. (06 Marks)
	b.	What is a transducer? Explain the working of LVDT. (05 Marks)
	c.	What is a microprocessor? With a neat block diagram, explain the architecture of 8085 microprocessor (09 Marks)
		microprocessor.
		What is a Latch? With the help of a logic diagram and truth table, explain the working of a
8	a.	NAND gate latch. (06 Marks)
	b.	List the differences between microprocessors and microcontrollers. (04 Marks)
	c.	Write a short note on:
		(i) Resistance thermometer and
		(ii) Thermistor. (10 Marks)
		Module 35
9	a.	What are the commonly used frequency ranges in communication on systems? Mention the
	b.	applications of each range. Define amplitude modulation. Draw the AM signal and its spectrum. For an amplitude
	U.	Define amplitude modulation. Draw the Airi signal and its spectrum. For an amplitude
		modulated wave, prove that total power is given by, $P_t = P_C \left[1 + \frac{\mu^2}{2} \right]$, where μ is the
		modulation index. (06 Marks)
	C.	What is ISDN? Explain the services of ISDN. (05 Marks)
	d.	With a neat block diagram, explain the optical fibre communication system. (05 Marks)
10		With a block diagram explain typical cellular mobile radio unit. (05 Marks)
10	a.	With a block diagram, explain typical cellular mobile radio unit. (05 Marks) What are the advantages of optical fibre communication? (05 Marks)
	c.	Compare AM and FM modulation schemes. (04 Marks)
	d.	An audio signal frequency signal $5\sin 2\pi (1000)$ t is used to amplitude modulate a carrier of
		$100 \sin 2\pi (10^6)$ t. Assume modulation index of 0.4. Find
		(i) Sideband frequencies. (ii) Band width required.
		(iii) Amplitude of each side band
		(iv) Total power delivered to a load of 100Ω (% Marks)